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Foreword

At some point during nearly every interview I give, as well as in question periods after
talks, I get asked some variant of the same question: “Did you expect Unix to last for so
long?” And of course the answer is always the same: No, we didn’t quite anticipate
what has happened. Even the observation that the system, in some form, has been
around for well more than half the lifetime of the commercial computing industry is
now dated.

The course of developments has been turbulent and complicated. Computer
technology has changed greatly since the early 1970s, most notably in universal
networking, ubiquitous graphics, and readily available personal computing, but the
system has somehow managed to accommodate all of these phenomena. The
commercial environment, although today dominated on the desktop by Microsoft and
Intel, has in some ways moved from single-supplier to multiple sources and, in recent
years, to increasing reliance on public standards and on freely available source.

Fortunately, Unix, considered as a phenomenon and not just a brand, has been able
to move with and even lead this wave. AT&T in the 1970s and 1980s was protective of
the actual Unix source code, but encouraged standardization efforts based on the
system’s interfaces and languages. For example, the SVID—the System V Interface
Definition—was published by AT&T, and it became the basis for the POSIX work and
its follow-ons. As it happened, Unix was able to adapt rather gracefully to a networked
environment and, perhaps less elegantly, but still adequately, to a graphical one. And as
it also happened, the basic Unix kernel interface and many of its characteristic user-level
tools were incorporated into the technological foundations of the open-source
movement. '

It is important that papers and writings about the Unix system were always
encouraged, even while the software of the system itself was proprietary, for example
Maurice Bach’s book, The Design of the Unix Operating System. In fact, I would claim that

xix
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Foreword

a central reason for the system’s longevity has been that it has attracted remarkably
talented writers to explain its beauties and mysteries. Brian Kernighan is one of these;
Rich Stevens is certainly another. The first edition of this book, along with his series of
books about networking, are rightfully regarded as remarkably well-crafted works of
exposition, and became hugely popular.

However, the first edition of this book was published before Linux and the several
open-source renditions of the Unix interface that stemmed from the Berkeley CSRG
became widespread, and also at a time when many people’s networking consisted of a
serial modem. Steve Rago has carefully updated this book to account for the technology
changes, as well as developments in various ISO and IEEE standards since its first
publication. Thus his examples are fresh, and freshly tested.

It's a most worthy second edition of a classic.

Murray Hill, New Jersey Dennis Ritchie
March 2005



Preface

Introduction

Rich Stevens and I first met through an e-mail exchange when I reported a
typographical error in his first book, UNIX Network Programming. He used to kid me
about being the person to send him his first errata notice for the book. Until his death in
1999, we exchanged e-mail irregularly, usually when one of us had a question we
thought the other might be able to answer. We met for dinner at USENIX conferences
and when Rich was teaching in the area.

Rich Stevens was a friend who always conducted himself as a gentleman. When 1
wrote UNIX System V Network Programming in 1993, I intended it to be a System V
version of Rich’s UNIX Network Programming. As was his nature, Rich gladly reviewed
chapters for me, and treated me not as a competitor, but as a colleague. We often talked
about collaborating on a STREAMS version of his TCP/IP lllustrated book. Had events
been different, we might have actually done it, but since Rich is no longer with us,
revising Advanced Programming in the UNIX Environment is the closest I'll ever get to
writing a book with him.

When the editors at Addison-Wesley told me that they wanted to update Rich’s
book, I thought that there wouldn’t be too much to change. Even after 13 years, Rich’s
work still holds up well. But the UNIX industry is vastly different today from what it
was when the book was first published.

 The System V variants are slowly being replaced by Linux. Thé major system
vendors that ship their hardware with their own versions of the UNIX System
have either made Linux ports available or announced support for Linux. Solaris
is perhaps the last descendant of UNIX System V Release 4 with any appreciable
market share.

xXxi
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Preface

* After 44BSD was released, the Computing Science Research Group (CSRG) from
the University of California at Berkeley decided to put an end to its
development of the UNIX operating system, but several different groups of
volunteers still maintain publicly available versions.

* The introduction of Linux, supported by thousands of volunteers, has made it
possible for anyone with a computer to run an operating system similar to the
UNIX System, with freely available source code for the newest hardware
devices. The success of Linux is something of a curiosity, given that several free
BSD alternatives are readily available.

* Continuing its trend as an innovative company, Apple Computer abandoned its
old Mac operating system and replaced it with one based on Mach and FreeBSD.

Thus, I've tried to update the information presented in this book to reflect these four
platforms.

After Rich wrote Advanced Programming in the UNIX Environment in 1992, T got rid of
most of my UNIX programmer’s manuals. To this day, the two books I keep closest to
my desk are a dictionary and a copy of Advanced Programming in the UNIX Environment.
I hope you find this revision equally useful.

Changes from the First Edition

Rich’s work holds up well. I've tried not to change his original vision for this book, but
a lot has happened in 13 years. This is especially true with the standards that affect the
UNIX programming interface.

Throughout the book, I've updated interfaces that have changed from the ongoing
efforts in standards organizations. This is most noticeable in Chapter 2, since its
primary topic is standards. The 2001 version of the POSIX.1 standard, which we use in
this revision, is much more comprehensive than the 1990 version on which the first
edition of this book was based. The 1990 ISO C standard was updated in 1999, and
some changes affect the interfaces in the POSIX.1 standard.

A lot more interfaces are now covered by the POSIX.1 specification. The base
specifications of the Single UNIX Specification (published by The Open Group, formerly
X/Open) have been merged with POSIX.1. POSIX.1 now includes several 1003.1
standards and draft standards that were formerly published separately.

Accordingly, I've added chapters to cover some new topics. Threads and
multithreaded programming are important concepts because they present a cleaner way
for programmers to deal with concurrency and asynchrony.

The socket interface is now part of POSIX.1. It provides a single interface to
interprocess communication (IPC), regardless of the location of the process, and is a
natural extension of the IPC chapters.

I"'ve omitted most of the real-time interfaces that appear in POSIX.1. These are best
treated in a text devoted to real-time programming. One such book appears in the
bibliography.

I've updated the case studies in the last chapters to cover more relevant real-world
examples. For example, few systems these days are connected to a PostScript printer.
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via a serial or parallel port. Most PostScript printers today are accessed via a network,
so I've changed the case study that deals with PostScript printer communication to take
this into account.

The chapter on modem communication is less relevant these days. So that the
original material is not lost, however, it is available on the book’s Web site in two
formats: PostScript (http://www.apuebook.com/lostchapter/modem.ps) and
PDF (http: //www.apuebook.com/lostchapter/modem. pdf).

The source code for the examples shown in this book is also available at
www . apuebook . com. Most of the examples have been run on four platforms:

1. FreeBSD 5.2.1, a derivative of the 4.4BSD release from the Computer Systems
Research Group at the University of California at Berkeley, running on an Intel
Pentium processor

2. Linux 2.4.22 (the Mandrake 9.2 distribution), a free UNIX-like operating system,
running on Intel Pentium processors

3. Solaris 9, a derivative of System V Release 4 from Sun Microsystems, running on
a 64-bit UltraSPARC 1Ii processor

4. Darwin 7.4.0, an operating environment based on FreeBSD and Mach,
supported by Apple Mac OS X, version 10.3, on a PowerPC processor
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The technical reviewers suggested many improvements and helped make sure that
the content was accurate. Many thanks to David Bausum, David Boreham, Keith Bostic,
Mark Ellis, Phil Howard, Andrew Josey, Mukesh Kacker, Brian Kernighan, Bengt
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Franz, John Fuller, Karen Gettman, Jessica Goldstein, Noreen Regina, and John Wait.

~ My thanks to Evelyn Pyle for the fine job of copyediting.

As Rich did, I also welcome electronic mail from any readers with comments,
suggestions, or bug fixes.

Warren, New Jersey Stephen A. Rago
April 2005 sar@apuebook.com






Preface to the First Edition

Introduction

This book describes the programming interface to the Unix system—the system call
interface and many of the functions provided in the standard C library. 1t is intended
for anyone writing programs that run under Unix.

Like most operating systems, Unix provides numerous services to the programs
that are running—open a file, read a file, start a new program, allocate a region of
memory, get the current time-of-day, and so on. This has been termed the system call
interface. Additionally, the standard C library provides numerous functions that are
used by almost every C program (format a variable’s value for output, compare two
strings, etc.).

The system call interface and the library routines have traditionally been described
in Sections 2 and 3 of the Unix Programmer’s Manual. This book is not a duplication of
these sections. Examples and rationale are missing from the Unix Programmer’s Manual,

_and that’s what this book provides.

Unix Standards

The proliferation of different versions of Unix during the 1980s has been tempered by
the various international standards that were started during the late 1980s. These
include the ANSI standard for the C programming language, the IEEE POSIX family
(still being developed), and the X/Open portability guide.

This book also describes these standards. But instead of just describing the
standards by themselves, we describe them in relation to popular implementations of
the standards—System V Release 4 and the forthcoming 4.4BSD. This provides a real-
world description, which is often lacking from the standard itself and from books that
describe only the standard.

XXV



xxvi Preface

Organization of the Book

This book is divided into six parts:

L. An overview and introduction to basic Unix programming concepts and
terminology (Chapter 1), with a discussion of the various Unix standardization
efforts and different Unix implementations (Chapter 2).

2. I/O—unbuffered I/O (Chapter 3), properties of files and directories
(Chapter 4), the standard I/O library (Chapter 5), and the standard system data
files (Chapter 6).

3. Processes—the environment of a Unix process (Chapter 7), process control
(Chapter 8), the relationships between different processes (Chapter 9), and
signals (Chapter 10).

4. More I/O—terminal I/O (Chapter 11), advanced 1/O (Chapter 12), and daemon
processes (Chapter 13).

IPC—Interprocess communication (Chapters 14 and 15).

Examples—a database library (Chapter 16), communicating with a PostScript
printer (Chapter 17), a modem dialing program (Chapter 18), and using pseudo
terminals (Chapter 19).

A reading familiarity with C would be beneficial as would some experience using
Unix. No prior programming experience with Unix is assumed. This text is intended
for programmers familiar with Unix and programmers familiar with some other
operating system who wish to learn the details of the services provided by most Unix
systems.

Examples in the Text

This book contains many examples—approximately 10,000 lines of source code. All the
examples are in the C programming language. Furthermore, these examples are in
ANSI C. You should have a copy of the Unix Programmer’s Manual for your system
handy while reading this book, since reference is made to it for some of the more
esoteric and implementation-dependent features.

Almost every function and system call is demonstrated with a small, complete
program. This lets us see the arguments and return values and is often easier to
comprehend than the use of the function in a much larger program. But since some of
the small programs are contrived examples, a few bigger examples are also included
(Chapters 16, 17, 18, and 19). These larger examples demonstrate the programming
techniques in larger, real-world examples.

All the examples have been included in the text directly from their source files. A
machine-readable copy of all the examples is available via anonymous FTP from the
Internet host £tp.uu.net in the file published/books/stevens.advprog. tar.Z.
Obtaining the source code allows you to modify the programs from this text and
experiment with them on your system.
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Systems Used to Test the Examples

Unfortunately all operating systems are moving targets. Unix is no exception. The
following diagram shows the recent evolution of the various versions of System V and

4. xBSD.
43+BSD
4.3BSD 4.3BSD Tahoe 4.3BSD Reno 44BSD?
l l BSD Net 1 l BSD Net 2 l
' '
| I | | 1 1 i 1
F—qogg T Tegy " 198 ‘T A N L T B
| [} i
i I * I
SVR3.0 SVR3.1 SVR32 | SVR4
| |
XPG3 ANSIC POSIX.1

4xBSD are the various systems from the Computer Systems Research Group at the
University of California at Berkeley. This group also distributes the BSD Net 1 and BSD
Net 2 releases—publicly available source code from the 4.xBSD systems. SVRx refers to
System V Release x from AT&T. XPG3 is the X/Open Portability Guide, Issue 3, and
ANSI C is the ANSI standard for the C programming language. POSIX.1 is the IEEE
and ISO standard for the interface to a Unix-like system. We'll have more to say about
these different standards and the various versions of Unix in Sections 2.2 and 2.3.

In this text we use the term 4.3+BSD to refer to the Unix system from
Berkeley that is somewhere between the BSD Net 2 release and 4.4BSD.

At the time of this writing, 4.4BSD was not released, so the system could not be called 4.4BSD.
Nevertheless a simple name was needed to refer to this system and 4.3+BSD is used
throughout the text.

Most of the examples in this text have been run on four different versions of Unix:

1. Unix System V/386 Release 4.0 Version 2.0 (“vanilla SVR4”) from U.H. Corp.
(UHC), on an Intel 80386 processor.

2. 4.3+BSD at the Computer Systems Research Group, Computer Science Division,
University of California at Berkeley, on a Hewlett Packard workstation.

3. BSD/386 (a derivative of the BSD Net 2 release) from Berkeley Software Design,
Inc., on an Intel 80386 processor. This system is almost identical to what we call
4.3+BSD.

4. SunOS 4.1.1 and 4.1.2 (systems with a strong Berkeley heritage but many
System V features) from Sun Microsystems, on a SPARCstation SLC.

Numerous timing tests are provided in the text and the systems used for the test are
identified.
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