Advanced Programming
in the UNIX® Environment

Second Edition

W. Richard Stevens
Stephen A. Rago

PEARSON
Education |

Valsehi] igrary

min

Reen No: 913877

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

Copyright © 2005 by Pearson Education, Inc.
This edition is published by arrangement with Pearson Education, Inc. and Dorling Kindersley
Publishing Inc.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold,
hired out, or otherwisc circulated without the publisher’s prior written consent in any form of binding or
cover other than that in which it is published and without a similar condition including this condition being
imposed on the subsequent purchaser and without limiting the rights under copyright reserved above, no
part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in
any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior
written permission of both the copyright owner and the above-mentioned publisher of this book.

ISBN 978-81-317-0005-1 R

Srinivas Institute of Technology
First Impression, 2006 ,
Second Impression, 2007 Acc. Nu..... TIPS)
Third Impression, 2008
Fourth Impression, 2008
Fifth Impression, 2009

SPITIE T ASAALAIESTTIIAT T EN NN S v s s vass

This edition is manufactured in India and is authorized for sale only in India, Bangladesh, Bhutan,
Pakistan, Nepal, Sri Lanka and the Maldives. Circulation of this edition outside of these territories is
UNAUTHORIZED.

Published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South Asia.

Head Office: 482, F.L.E., Patparganj, Delhi 110 092, India.
Registered Office: 14 Local Shopping Centre, Panchsheel Park, New Delhi 110 017, India.

Printed in India by Baba Barkha Nath Printers.

Contents

Foreword

Preface

Preface to the First Edition

Chapter 1.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

Chapter 2.

2.1
2.2
2.2.1

UNIX System Overview

Introduction 1

UNIX Architecture 1

Logging In 2

Files and Directories 4
Input and Output 8
Programs and Processes 10
Error Handling 14

User Identification 16
Signals 18

Time Values 20

System Calls and Library Functions 21
Summary 23

UNIX Standardization and Implementations

Introduction 25
UNIX Standardization 25
ISO C 25 '

XiX

xXi

XXV

25

ix

X Contents

222
223
224
23
2.3.1
232
2.3.3
234
2.3.5
2.3.6
2.3.7
24
2.5
2.51
25.2
253
254
255
2.6
2.7
2.8
2.9
2.10

Chapter 3.

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

IEEE POSIX 26
The Single UNIX Specification 29
FIPS 33
UNIX System Implementations 33
UNIX System V Release 4 33
4.4BSD 34
FreeBSD 35
Linux 35
Mac OS X 35
Solaris 35
Other UNIX Systems 36

Relationship of Standards and Implementations

Limits 36
ISO C Limits 38
POSIX Limits 38
XSI Limits 40

sysconf, pathconf, and fpathconf Functions

Indeterminate Runtime Limits 48
Options 52
Feature Test Macros 55
Primitive System Data Types 56
Conflicts Between Standards 56
Summary 58

File I/O

Introduction 59

File Descriptors 59

open Function 60

creat Function 62

close Function 63

lseek Function 63

read Function 67

write Function 68

I/O Efficiency 68

File Sharing 70

Atomic Operations 74

dup and dup2 Functions 76
sync, fsync, and fdatasync Functions
fentl Function 78

ioctl Function 83
/dev/fd 84

Summary 85

77

41

59

Contents

xi

Chapter 4.

41
42
4.3
4.4
45
46
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

Chapter 5.

5.1
52
53
5.4
5.5
5.6
5.7
58
5.9
5.10
5.11
5.12
5.13

Files and Directories 87

Introduction 87

stat, fstat, and lstat Functions 87

File Types 88

Set-User-ID and Set-Group-ID 91

File Access Permissions 92

Ownership of New Files and Directories 95
access Function 95

umask Function 97

chmod and fchmod Functions 99

Sticky Bit 101

chown, fchown, and lchown Functions 102
File Size 103

File Truncation 105

File Systems 105

link, unlink, remove, and rename Functions 108
Symbolic Links 112

symlink and readlink Functions 115

File Times 115

utime Function 116

mkdir and rmdir Functions 119

Reading Directories 120]
chdir, fchdir, and getcwd Functions _ 125
Device Special Files 127)
Summary of File Access Permission Bits 130
Summary 130

Standard /O Library 133

Introduction 133

Streams and FILE Objects 133
Standard Input, Standard Output, and Standard Error 135
Buffering 135

Opening a Stream 138

Reading and Writing a Stream 140
Line-at-a-Time 1/O 142

Standard 1/O Efficiency 143

Binary 1/O 145

Positioning a Stream 147
Formatted 1/0 149

Implementation Details 153
Temporary Files 155

xii

Contents

5.14
5.15

Chapter 6.

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Chapter 7.

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
712

Chapter 8.

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Alternatives to Standard /O 159
Summary 159

System Data Files and Information 161

Introduction 161

Password File 161

Shadow Passwords 165
Group File 166
Supplementary Group IDs 167
Implementation Differences 169
Other Data Files 169

Login Accounting 170

System Identification 171
Time and Date Routines 173
Summary 177

Process Environment 179

Introduction 179

main Function 179

Process Termination 180
Command-Line Arguments 185
Environment List 185

Memory Layout of a C Program 186
Shared Libraries 188

Memory Allocation 189

Environment Variables 192

setjmp and longjmp Functions 195
getrlimit and setrlimit Functions 202
Summary 206

Process Control 209

Introduction 209

Process Identifiers 209

fork Function 211

vfork Function 216

exit Functions 218

wait and waitpid Functions 220
waitid Function 226

wait3 and wait4 Functions 227
Race Conditions 227

exec Functions 231

Contents

xiii

8.11
8.12
8.13
8.14
8.15
8.16
8.17

Chapter 9.

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

Chapter 10.

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18

Changing User IDs and Group IDs 237
Interpreter Files 242

system Function 246

Process Accounting 250

User Identification 256

Process Times 257

Summary 259

Process Relationships 261

Introduction 261

Terminal Logins 261

Network Logins 266

Process Groups 269

Sessions 270

Controlling Terminal 272
tcgetpgrp, tcsetpgrp, and tcgetsid Functions 273
Job Control 274

Shell Execution of Programs 278
Orphaned Process Groups 282
FreeBSD Implementation 285
Summary 287

Signals 289

Introduction 289

Signal Concepts 289

signal Function 298

Unreliable Signals 301

interrupted System Calls 303

Reentrant Functions 305

SIGCLD Semantics 308

Reliable-Signal Terminology and Semantics 310
kill and raise Functions 311

alarm and pause Functions 313

Signal Sets 318

sigprocmask Function 320

sigpending Function 322

sigaction Function 324

sigsetjmp and siglongjmp Functions 329
sigsuspend Function 333

abort Function 340

system Function 342

xiv

Contents

10.19
10.20
10.21
10.22

Chapter 11.

111
11.2
11.3
11.4
11.5
11.6
11.7

Chapter 12.

121
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Chapter 13.

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Chapter 14.

14.1
14.2
14.3

sleep Function 347
Job-Control Signals 349
Additional Features 352
Summary 353

Threads

Introduction 355

Thread Concepts 355
Thread Identification 356
Thread Creation 357
Thread Termination 360
Thread Synchronization 368
Summary 385

Thread Control

Introduction 387

Thread Limits 387
Thread Attributes 388
Synchronization Attributes 393
Reentrancy 401
Thread-Specific Data 406
Cancel Options 410
Threads and Signals 413
Threads and fork 416
Threads and 1/O 420
Summary 420

Daemon Processes

Introduction 423

Daemon Characteristics 423
Coding Rules 425

Error Logging 428
Single-Instance Daemons 432
Daemon Conventions 434
Client-Server Model 439
Summary 439

Advanced 1/0

Introduction 441
Nonblocking 1/0O 441
Record Locking 444

355

387

423

441

Contents

XV

14.4
14.5
14.5.1
14.5.2
14.6
14.6.1
14.6.2
14.7
14.8
14.9
14.10

Chapter 15.

15.1
15.2
15.3
15.4
15.5
15.6
15.6.1
15.6.2
15.6.3
15.6.4
15.7
15.8
15.9
15.10
15.11

Chapter 16.

16.1
16.2
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.4
16.5
16.6
16.7

STREAMS 460
/O Multiplexing 472
select and pselect Functions 474
poll Function 479
Asynchronous /0 481
System V Asynchronous /O 481
BSD Asynchronous 1/O 482
readv and writev Functions 483
readn and writen Functions 485
Memory-Mapped /O 487
Summary 492

Interprocess Communication 495
Introduction 495
Pipes 496

popen and pclose Functions 503
Coprocesses 510
FIFOs 514
XSt IPC 518
Identifiers and Keys 518
Permission Structure 520
Configuration Limits 521
Advantages and Disadvantages 521
Message Queues 522
Semaphores 527
Shared Memory 533
Client—Server Properties 541
Summary 543

Network IPC: Sockets 545

Introduction 545
Socket Descriptors 546
Addressing 549
Byte Ordering 549
Address Formats 551
Address Lookup 553
Associating Addresses with Sockets 560
Connection Establishment 561
Data Transfer 565
Socket Options 579
Out-of-Band Data 581

xvi Contents

16.8
16.9

Chapter 17.

17.1
17.2
17.2.1
17.2.2
17.3
17.3.1
17.3.2
17.4
17.4.1
17.4.2
17.5
17.6
17.7

Chapter 18.

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14

Chapter 19.

19.1
19.2
19.3
19.3.1
19.3.2
19.3.3

Nonblocking and Asynchronous 1/O 582
Summary 583

Advanced IPC 585

Introduction 585
STREAMS-Based Pipes 585
Naming STREAMS Pipes 589
Unique Connections 590
UNIX Domain Sockets 594
Naming UNIX Domain Sockets 595
Unique Connections 597
Passing File Descriptors 601
Passing File Descriptors over STREAMS-Based Pipes 604
Passing File Descriptors over UNIX Domain Sockets 606
An Open Server, Version 1 615
An Open Server, Version 2 620
Summary 629

Terminal 1/O 631

Introduction 631

Overview 631

Special Input Characters 638

Getting and Setting Terminal Attributes 643
Terminal Option Flags 643

stty Command 651

Baud Rate Functions 652

Line Control Functions 653

Terminal identification 654

Canonical Mode 660

Noncanonical Mode 663

Terminal Window Size 670

termcap, terminfo, and curses 672
Summary 673

Pseudo Terminals 675

Introduction 675

Overview 675

Opening Pseudo-Terminal Devices 681
STREAMS-Based Pseudo Terminals 683
BSD-Based Pseudo Terminals 686
Linux-Based Pseudo Terminals 689

Contents

xvii

19.4
19.5
19.6
19.7
19.8

Chapter 20.

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
20.10

Chapter 21.

211
21.2
21.3
214
215
21.6

Appendix A.

Appendix B.

B.1
B.2

Appendix C.

Index

pty_fork Function 691
pty Program 694

Using the pty Program 698
Advanced Features 705
Summary 706

A Database Library

Introduction 709

History 709

The Library 710

Implementation Overview 712
Centralized or Decentralized? 716
Concurrency 718

Building the Library 719

Source Code 719

Performance 747

Summary 752

Communicating with a Network Printer

Introduction 753

The Internet Printing Protocol 753
The Hypertext Transfer Protocol 756
Printer Spooling 757

Source Code 758

Summary 805

Function Prototypes

Miscellaneous Source Code

Our Header File 843
Standard Error Routines 846

Solutions to Selected Exercises

709

753

807

843

853

885

Foreword

At some point during nearly every interview I give, as well as in question periods after
talks, I get asked some variant of the same question: “Did you expect Unix to last for so
long?” And of course the answer is always the same: No, we didn’t quite anticipate
what has happened. Even the observation that the system, in some form, has been
around for well more than half the lifetime of the commercial computing industry is
now dated.

The course of developments has been turbulent and complicated. Computer
technology has changed greatly since the early 1970s, most notably in universal
networking, ubiquitous graphics, and readily available personal computing, but the
system has somehow managed to accommodate all of these phenomena. The
commercial environment, although today dominated on the desktop by Microsoft and
Intel, has in some ways moved from single-supplier to multiple sources and, in recent
years, to increasing reliance on public standards and on freely available source.

Fortunately, Unix, considered as a phenomenon and not just a brand, has been able
to move with and even lead this wave. AT&T in the 1970s and 1980s was protective of
the actual Unix source code, but encouraged standardization efforts based on the
system’s interfaces and languages. For example, the SVID—the System V Interface
Definition—was published by AT&T, and it became the basis for the POSIX work and
its follow-ons. As it happened, Unix was able to adapt rather gracefully to a networked
environment and, perhaps less elegantly, but still adequately, to a graphical one. And as
it also happened, the basic Unix kernel interface and many of its characteristic user-level
tools were incorporated into the technological foundations of the open-source
movement. '

It is important that papers and writings about the Unix system were always
encouraged, even while the software of the system itself was proprietary, for example
Maurice Bach’s book, The Design of the Unix Operating System. In fact, I would claim that

xix

XX

Foreword

a central reason for the system’s longevity has been that it has attracted remarkably
talented writers to explain its beauties and mysteries. Brian Kernighan is one of these;
Rich Stevens is certainly another. The first edition of this book, along with his series of
books about networking, are rightfully regarded as remarkably well-crafted works of
exposition, and became hugely popular.

However, the first edition of this book was published before Linux and the several
open-source renditions of the Unix interface that stemmed from the Berkeley CSRG
became widespread, and also at a time when many people’s networking consisted of a
serial modem. Steve Rago has carefully updated this book to account for the technology
changes, as well as developments in various ISO and IEEE standards since its first
publication. Thus his examples are fresh, and freshly tested.

It's a most worthy second edition of a classic.

Murray Hill, New Jersey Dennis Ritchie
March 2005

Preface

Introduction

Rich Stevens and I first met through an e-mail exchange when I reported a
typographical error in his first book, UNIX Network Programming. He used to kid me
about being the person to send him his first errata notice for the book. Until his death in
1999, we exchanged e-mail irregularly, usually when one of us had a question we
thought the other might be able to answer. We met for dinner at USENIX conferences
and when Rich was teaching in the area.

Rich Stevens was a friend who always conducted himself as a gentleman. When 1
wrote UNIX System V Network Programming in 1993, I intended it to be a System V
version of Rich’s UNIX Network Programming. As was his nature, Rich gladly reviewed
chapters for me, and treated me not as a competitor, but as a colleague. We often talked
about collaborating on a STREAMS version of his TCP/IP lllustrated book. Had events
been different, we might have actually done it, but since Rich is no longer with us,
revising Advanced Programming in the UNIX Environment is the closest I'll ever get to
writing a book with him.

When the editors at Addison-Wesley told me that they wanted to update Rich’s
book, I thought that there wouldn’t be too much to change. Even after 13 years, Rich’s
work still holds up well. But the UNIX industry is vastly different today from what it
was when the book was first published.

 The System V variants are slowly being replaced by Linux. Thé major system
vendors that ship their hardware with their own versions of the UNIX System
have either made Linux ports available or announced support for Linux. Solaris
is perhaps the last descendant of UNIX System V Release 4 with any appreciable
market share.

xXxi

xxii

Preface

* After 44BSD was released, the Computing Science Research Group (CSRG) from
the University of California at Berkeley decided to put an end to its
development of the UNIX operating system, but several different groups of
volunteers still maintain publicly available versions.

* The introduction of Linux, supported by thousands of volunteers, has made it
possible for anyone with a computer to run an operating system similar to the
UNIX System, with freely available source code for the newest hardware
devices. The success of Linux is something of a curiosity, given that several free
BSD alternatives are readily available.

* Continuing its trend as an innovative company, Apple Computer abandoned its
old Mac operating system and replaced it with one based on Mach and FreeBSD.

Thus, I've tried to update the information presented in this book to reflect these four
platforms.

After Rich wrote Advanced Programming in the UNIX Environment in 1992, T got rid of
most of my UNIX programmer’s manuals. To this day, the two books I keep closest to
my desk are a dictionary and a copy of Advanced Programming in the UNIX Environment.
I hope you find this revision equally useful.

Changes from the First Edition

Rich’s work holds up well. I've tried not to change his original vision for this book, but
a lot has happened in 13 years. This is especially true with the standards that affect the
UNIX programming interface.

Throughout the book, I've updated interfaces that have changed from the ongoing
efforts in standards organizations. This is most noticeable in Chapter 2, since its
primary topic is standards. The 2001 version of the POSIX.1 standard, which we use in
this revision, is much more comprehensive than the 1990 version on which the first
edition of this book was based. The 1990 ISO C standard was updated in 1999, and
some changes affect the interfaces in the POSIX.1 standard.

A lot more interfaces are now covered by the POSIX.1 specification. The base
specifications of the Single UNIX Specification (published by The Open Group, formerly
X/Open) have been merged with POSIX.1. POSIX.1 now includes several 1003.1
standards and draft standards that were formerly published separately.

Accordingly, I've added chapters to cover some new topics. Threads and
multithreaded programming are important concepts because they present a cleaner way
for programmers to deal with concurrency and asynchrony.

The socket interface is now part of POSIX.1. It provides a single interface to
interprocess communication (IPC), regardless of the location of the process, and is a
natural extension of the IPC chapters.

I"'ve omitted most of the real-time interfaces that appear in POSIX.1. These are best
treated in a text devoted to real-time programming. One such book appears in the
bibliography.

I've updated the case studies in the last chapters to cover more relevant real-world
examples. For example, few systems these days are connected to a PostScript printer.

Preface xxiii

via a serial or parallel port. Most PostScript printers today are accessed via a network,
so I've changed the case study that deals with PostScript printer communication to take
this into account.

The chapter on modem communication is less relevant these days. So that the
original material is not lost, however, it is available on the book’s Web site in two
formats: PostScript (http://www.apuebook.com/lostchapter/modem.ps) and
PDF (http: //www.apuebook.com/lostchapter/modem. pdf).

The source code for the examples shown in this book is also available at
www . apuebook . com. Most of the examples have been run on four platforms:

1. FreeBSD 5.2.1, a derivative of the 4.4BSD release from the Computer Systems
Research Group at the University of California at Berkeley, running on an Intel
Pentium processor

2. Linux 2.4.22 (the Mandrake 9.2 distribution), a free UNIX-like operating system,
running on Intel Pentium processors

3. Solaris 9, a derivative of System V Release 4 from Sun Microsystems, running on
a 64-bit UltraSPARC 1Ii processor

4. Darwin 7.4.0, an operating environment based on FreeBSD and Mach,
supported by Apple Mac OS X, version 10.3, on a PowerPC processor

Acknowledgments

Rich Stevens wrote the first edition of this book on his own, and it became an instant
classic.

I couldn’t have updated this book without the support of my family. They put up
with piles of papers scattered about the house (well, more so than usual), my
monopolizing most of the computers in the house, and lots of hours with my face
buried behind a computer terminal. My wife, Jeanne, even helped out by installing
Linux for me on one of the test machines.

The technical reviewers suggested many improvements and helped make sure that
the content was accurate. Many thanks to David Bausum, David Boreham, Keith Bostic,
Mark Ellis, Phil Howard, Andrew Josey, Mukesh Kacker, Brian Kernighan, Bengt
Kleberg, Ben Kuperman, Eric Raymond, and Andy Rudoff.

I'd also like to thank Andy Rudoff for answering questions about Solaris and
Dennis Ritchie for digging up old papers and answering history questions. Once again,
the staff at Addison-Wesley was great to work with. Thanks to Tyrrell Albaugh, Mary
Franz, John Fuller, Karen Gettman, Jessica Goldstein, Noreen Regina, and John Wait.

~ My thanks to Evelyn Pyle for the fine job of copyediting.

As Rich did, I also welcome electronic mail from any readers with comments,
suggestions, or bug fixes.

Warren, New Jersey Stephen A. Rago
April 2005 sar@apuebook.com

Preface to the First Edition

Introduction

This book describes the programming interface to the Unix system—the system call
interface and many of the functions provided in the standard C library. 1t is intended
for anyone writing programs that run under Unix.

Like most operating systems, Unix provides numerous services to the programs
that are running—open a file, read a file, start a new program, allocate a region of
memory, get the current time-of-day, and so on. This has been termed the system call
interface. Additionally, the standard C library provides numerous functions that are
used by almost every C program (format a variable’s value for output, compare two
strings, etc.).

The system call interface and the library routines have traditionally been described
in Sections 2 and 3 of the Unix Programmer’s Manual. This book is not a duplication of
these sections. Examples and rationale are missing from the Unix Programmer’s Manual,

_and that’s what this book provides.

Unix Standards

The proliferation of different versions of Unix during the 1980s has been tempered by
the various international standards that were started during the late 1980s. These
include the ANSI standard for the C programming language, the IEEE POSIX family
(still being developed), and the X/Open portability guide.

This book also describes these standards. But instead of just describing the
standards by themselves, we describe them in relation to popular implementations of
the standards—System V Release 4 and the forthcoming 4.4BSD. This provides a real-
world description, which is often lacking from the standard itself and from books that
describe only the standard.

XXV

xxvi Preface

Organization of the Book

This book is divided into six parts:

L. An overview and introduction to basic Unix programming concepts and
terminology (Chapter 1), with a discussion of the various Unix standardization
efforts and different Unix implementations (Chapter 2).

2. I/O—unbuffered I/O (Chapter 3), properties of files and directories
(Chapter 4), the standard I/O library (Chapter 5), and the standard system data
files (Chapter 6).

3. Processes—the environment of a Unix process (Chapter 7), process control
(Chapter 8), the relationships between different processes (Chapter 9), and
signals (Chapter 10).

4. More I/O—terminal I/O (Chapter 11), advanced 1/O (Chapter 12), and daemon
processes (Chapter 13).

IPC—Interprocess communication (Chapters 14 and 15).

Examples—a database library (Chapter 16), communicating with a PostScript
printer (Chapter 17), a modem dialing program (Chapter 18), and using pseudo
terminals (Chapter 19).

A reading familiarity with C would be beneficial as would some experience using
Unix. No prior programming experience with Unix is assumed. This text is intended
for programmers familiar with Unix and programmers familiar with some other
operating system who wish to learn the details of the services provided by most Unix
systems.

Examples in the Text

This book contains many examples—approximately 10,000 lines of source code. All the
examples are in the C programming language. Furthermore, these examples are in
ANSI C. You should have a copy of the Unix Programmer’s Manual for your system
handy while reading this book, since reference is made to it for some of the more
esoteric and implementation-dependent features.

Almost every function and system call is demonstrated with a small, complete
program. This lets us see the arguments and return values and is often easier to
comprehend than the use of the function in a much larger program. But since some of
the small programs are contrived examples, a few bigger examples are also included
(Chapters 16, 17, 18, and 19). These larger examples demonstrate the programming
techniques in larger, real-world examples.

All the examples have been included in the text directly from their source files. A
machine-readable copy of all the examples is available via anonymous FTP from the
Internet host £tp.uu.net in the file published/books/stevens.advprog. tar.Z.
Obtaining the source code allows you to modify the programs from this text and
experiment with them on your system.

Preface xxvii

Systems Used to Test the Examples

Unfortunately all operating systems are moving targets. Unix is no exception. The
following diagram shows the recent evolution of the various versions of System V and

4. xBSD.
43+BSD
4.3BSD 4.3BSD Tahoe 4.3BSD Reno 44BSD?
l l BSD Net 1 l BSD Net 2 l
' '
| I | | 1 1 i 1
F—qogg T Tegy " 198 ‘T A N L T B
| [} i
i I * I
SVR3.0 SVR3.1 SVR32 | SVR4
| |
XPG3 ANSIC POSIX.1

4xBSD are the various systems from the Computer Systems Research Group at the
University of California at Berkeley. This group also distributes the BSD Net 1 and BSD
Net 2 releases—publicly available source code from the 4.xBSD systems. SVRx refers to
System V Release x from AT&T. XPG3 is the X/Open Portability Guide, Issue 3, and
ANSI C is the ANSI standard for the C programming language. POSIX.1 is the IEEE
and ISO standard for the interface to a Unix-like system. We'll have more to say about
these different standards and the various versions of Unix in Sections 2.2 and 2.3.

In this text we use the term 4.3+BSD to refer to the Unix system from
Berkeley that is somewhere between the BSD Net 2 release and 4.4BSD.

At the time of this writing, 4.4BSD was not released, so the system could not be called 4.4BSD.
Nevertheless a simple name was needed to refer to this system and 4.3+BSD is used
throughout the text.

Most of the examples in this text have been run on four different versions of Unix:

1. Unix System V/386 Release 4.0 Version 2.0 (“vanilla SVR4”) from U.H. Corp.
(UHC), on an Intel 80386 processor.

2. 4.3+BSD at the Computer Systems Research Group, Computer Science Division,
University of California at Berkeley, on a Hewlett Packard workstation.

3. BSD/386 (a derivative of the BSD Net 2 release) from Berkeley Software Design,
Inc., on an Intel 80386 processor. This system is almost identical to what we call
4.3+BSD.

4. SunOS 4.1.1 and 4.1.2 (systems with a strong Berkeley heritage but many
System V features) from Sun Microsystems, on a SPARCstation SLC.

Numerous timing tests are provided in the text and the systems used for the test are
identified.

xxviii

Preface

Acknowledgments

Once again I am indebted to my family for their love, support, and many lost weekends
over the past year and a half. Writing a book is, in many ways, a family affair. Thank
you Sally, Bill, Ellen, and David.

I am especially grateful to Brian Kernighan for his help in the book. His numerous
thorough reviews of the entire manuscript and his gentle prodding for better prose
hopefully show in the final result. Steve Rago was also a great resource, both in
reviewing the entire manuscript and answering many questions about the details and
history of System V. My thanks to the other technical reviewers used by Addison-
Wesley, who provided valuable comments on various portions of the manuscript:
Maury Bach, Mark Ellis, Jeff Gitlin, Peter Honeyman, John Linderman, Doug Mcllroy,
Evi Nemeth, Craig Partridge, Dave Presotto, Gary Wilson, and Gary Wright.

Keith Bostic and Kirk McKusick at the U.C. Berkeley CSRG provided an account
that was used to test the examples on the latest BSD system. (Many thanks to Peter
Salus too.) Sam Nataros and Joachim Sacksen at UHC provided the copy of SVR4 used
to test the examples. Trent Hein helped obtain the alpha and beta copies of BSD/386.

Other friends have helped in many small, but significant ways over the past few
years: Paul Lucchina, Joe Godsil, Jim Hogue, Ed Tankus, and Gary Wright. My editor at
Addison-Wesley, John Wait, has been a great friend through it all. He never complained
when the due date slipped and the page count kept increasing. A special thanks to the
National Optical Astronomy Observatories (NOAO), especially Sidney Wolff, Richard
Wolff, and Steve Grandi, for providing computer time.

Real Unix books are written using troff and this book follows that time-honored
tradition. Camera-ready copy of the book was produced by the author using the groff
package written by James Clark. Many thanks to James Clark for providing this
excellent system and for his rapid response to bug fixes. Perhaps someday I will really
understand troff footer traps.

I welcome electronic mail from any readers with comments, suggestions, or bug
fixes.

Tucson, Arizona W. Richard Stevens
April 1992 rstevens@kohala.com
http://www.kohala.com/~rstevens

